Friday, 9 January 2015

transfer function - Deriving 2nd order passive low pass filter cutoff frequency


I'm working on a 2nd order passive low pass filter, consisting of two passive low pass filters chained together.


schematic


simulate this circuit – Schematic created using CircuitLab


Let \$ H(s) = H_1(s)H_2(s) \$ where \$ H_1(s) \$ and \$ H_2(s) \$ are the transfer functions for each separate filter stage.


Then \$ |H(s)| = |H_1(s)||H_2(s)| \$


Knowing the magnitude of a passive low pass filter,


$$|H(s)| = \dfrac1{\sqrt{ (\omega R_1C_1)^2 + 1} } \times \dfrac1{\sqrt{ (\omega R_2C_2)^2 + 1} } = \dfrac1{\sqrt{((\omega R_1C_1)^2 + 1)((\omega R_2C_2)^2 + 1)}} $$


Then trying to find the cutoff frequency:



$$ \left(\dfrac1{\sqrt{2}}\right)^2 = \dfrac1{\sqrt{((\omega R_1C_1)^2 + 1)((\omega R_2C_2)^2 + 1)}} $$ $$ 2 = \sqrt{((\omega R_1C_1)^2 + 1)((\omega R_2C_2)^2 + 1)} $$ $$ 4 = ((\omega R_1C_1)^2 + 1)((\omega R_2C_2)^2 + 1) $$ $$ 4 = (\omega R_1C_1)^2(\omega R_2C_2)^2 + (\omega R_1C_1)^2 + (\omega R_2C_2)^2 + 1 $$


And I'm stuck. Research on the web tells me \$ \omega_c = \dfrac1{\sqrt{R_1C_1R_2C_2}} \$, but I can't find why? Can anybody show my the derivation to find this?



Answer



EDIT: Thanks to hryghr I see that the starting assumptions were incorrect. The transfer function magnitude can't be found that simply. It is more than ten years since I considered my skills sharp on this topic, and knives don't get sharper in the drawer! But I can't have that I posted something formally incorrect, so here goes attempt #2:


I will derive the transfer function the dirty way .. using Kirchoff's Current Law (KCL) (a very generic method). I call the output node \$V_{o}\$, and the middle node \$V_{x}\$. For the following equations i cut down on writing by writing \$V_{o}\$ instead of the more accurate \$V_{o}(s)\$ :


I: KCL in \$V_{o}\$:


$$ \frac{V_{o}-V_{x}}{R_{2}}+sC_{2}V_{o}=0 $$


$$ V_{x}=V_{o}(1+sR_{2}C_{2}) $$ II: KCL in \$V_{x}\$:


$$ \frac{V_{x}-V_{i}}{R_{1}}+\frac{V_{x}-V_{o}}{R_{2}}+sC_{1}V_{x}=0 $$


Rearranging terms:



$$ R_{2}(V_{x}-V_{i})+R_{1}(V_{x}-V_{o})+sR_{1}R_{2}C_{1}V_{x}=0 $$


Rearranging terms:


$$ V_{x}(R_{1}+R_{2}+sR_{1}R_{2}C_{1})-R_{2}V_{i}-R_{1}V_{o}=0 $$


Substituting \$V_{x}\$ with result of I: $$ V_{o}(1+sR_{2}C_{2})(R_{1}+R_{2}+sR_{1}R_{2}C_{1})-R_{2}V_{i}-R_{1}V_{o}+sR_{1}R_{2}C_{1}V_{o}=0 $$


Collecting terms for \$V_{o}\$


$$ V_{o}((1+sR_{2}C_{2})(R_{1}+R_{2}+sR_{1}R_{2}C_{1})-R_{1})=R_{2}V_{i} $$


Rearranging:


$$ \frac{V_{o}}{V_{i}}=\frac{R_{2}}{(1+sR_{2}C_{2})(R_{1}+R_{2}+sR_{1}R_{2}C_{1})-R_{1}} $$


Expanding terms:


$$ \frac{V_{o}}{V_{i}}=\frac{R_{2}}{R_{1}+R_{2}+sR_{1}R_{2}C_{1}+sR_{1}R_{2}C_{2}+sR_{2}^{2}C_{2}+s^{2}R_{1}R_{2}^{2}C_{1}C_{2}-R_{1}} $$



\$R_{1}\$ cancels, then divide by \$R_{2}\$ top and bottom:


$$ \frac{V_{o}}{V_{i}}=\frac{1}{1+sR_{1}C_{1}+sR_{1}C_{2}+sR_{2}C_{2}+s^{2}R_{1}R_{2}C_{1}C_{2}} $$


Prettified, the transfer function is:


$$ H(s)=\frac{V_{o}(s)}{V_{i}(s)}=\frac{1}{s^{2}R_{1}R_{2}C_{1}C_{2}+s(R_{1}C_{1}+R_{1}C_{2}+R_{2}C_{2})+1} $$


This is probably a nice place to start converting to the standard form that hryghr mentions. It may be that the corner frequency asked for relates to that form. I won't bother to much with that, but move on to find the -3dB point.


The magnitude of the transfer function can for instance be found by calculating:


$$ \left|H(\omega)\right|=\sqrt{H(s\rightarrow j\omega)H(s\rightarrow-j\omega)} $$


Setting \$A=R_{1}R_{2}C_{1}C_{2}\$ and \$B=(R_{1}C_{1}+R_{1}C_{2}+R_{2}C_{2})\$ to simplify this calculation:


$$ \left|H(\omega)\right|=\frac{1}{\sqrt{((j\omega)^{2}A+(j\omega)B+1)((-j\omega)^{2}A+(-j\omega)B+1)}} $$


$$ \left|H(\omega)\right|=\frac{1}{\sqrt{(-\omega{}^{2}A+j\omega B+1)(-\omega{}^{2}A-j\omega B+1)}} $$



$$ \left|H(\omega)\right|=\frac{1}{\sqrt{\omega{}^{4}A^{2}-\omega{}^{2}A(j\omega B-j\omega B+1+1)+\omega^{2}B^{2}+(j\omega B-j\omega B)+1}} $$


$$ \left|H(\omega)\right|=\frac{1}{\sqrt{\omega{}^{4}A^{2}+\omega{}^{2}(B^{2}-2A)+1}} $$


Finding \$B^{2}-2A\$ gives you something like:


$$ R_{1}^{2}(C_{1}+C_{2})^{2}+C_{2}^{2}(2R_{1}R_{2}+R_{2}^{2}) $$


Then to find the -3dB point start at:


$$ \frac{1}{\sqrt{2}}=\frac{1}{\sqrt{\omega{}^{4}A^{2}+\omega{}^{2}(B^{2}-2A)+1}} $$


$$ 2=\omega{}^{4}A^{2}+\omega{}^{2}(B^{2}-2A)+1 $$


So far I have done it all by hand (hopefully no mistakes), but here I call it a day, try mathematica, and get \$\omega\$ for the -3dB frequency as:


$$ w\to\sqrt{\frac{1}{A}-\frac{B^{2}}{2A^{2}}+\frac{\sqrt{8A^{2}-4AB^{2}+B^{4}}}{2A^{2}}} $$


No comments:

Post a Comment

arduino - Can I use TI's cc2541 BLE as micro controller to perform operations/ processing instead of ATmega328P AU to save cost?

I am using arduino pro mini (which contains Atmega328p AU ) along with cc2541(HM-10) to process and transfer data over BLE to smartphone. I...