My Try:
Now
$\beta l=\frac{2\pi\times37.5\times10^6\times10}{3\times10^8}=\frac{5\pi}{2}$
so its becomes
$Z_{in}=\frac{Z_0^2}{Z_L} $
$Z_{in}=\frac{200\times200}{100}=400\Omega$
So for part $(a)$
$I_{i}=\frac{200}{600}=\frac{1}{3}A$ also $V_{i}=\frac{400\times200}{600}=\frac{400}{3}$
Now for part $(b)$ from the generator we know the equation for lossless line is $ I(z)=\frac{-j}{Z_0}sin\beta z V_i+Cos\beta z I_{i}$
so current at the load, that means at $\lambda/4$ distance from the generator will be $I=\frac{-j}{200}sin(\frac{5\pi}{2})\times\frac{400}{3}+0\times\frac{1}{3}=\frac{2}{3}\angle-90^{\circ}$
but for part$(b)$ the actual answer is $\frac{1}{3}\angle-90^{\circ}$
What is the mistake i am doing can anyone help please?
No comments:
Post a Comment