Friday, 2 September 2016

Heat lost in ideal capacitor charging


If we use an ideal capacitor to charge another ideal capacitor, my intuition tells me no heat is generated since capacitors are just storage elements. It shouldn't consume energy.


Original question


But in order to solve this question, I used two equations (conservation of charge and equal voltage for both capacitors at equilibrium) to find that energy had indeed been lost.


My diagram


My solution


What's the mechanism by which heat is lost in this case? Is it the energy required to push the charges closer together on C1? Is it energy spent to accelerate charges, to make it move? Am I right in claiming that no "heat" is generated?


I noticed that the energy lost equals that stored in the "equivalent" series capacitance if it was charged to \$V_0\$. Is there any reasoning why it is so?


Parallel capacitance




Answer



The problem with these theoretical examples lies in the fact the current is assumed infinite for 0 seconds. Crudely substituting this in the conservation law:


$$ \frac {\partial \rho }{\partial t} +\nabla \cdot \mathbf {J} = 0 $$


$$ \frac { \rho }{ 0 }+ \infty \neq 0 $$


Since charge is conserved, the assumption of infinite current in zero time is wrong.


How much power is dissipated \$P_{diss}=VI\$ cannot be defined, since the definition of the current is false.


So, the answer is: cannot be defined


EDIT
Note that the dissipation neither is 0 W because R = 0 \$ \Omega\$. For the same reason as above: \$ P = I^2R = \infty^2 \cdot 0 \$, which is not defined.


No comments:

Post a Comment

arduino - Can I use TI's cc2541 BLE as micro controller to perform operations/ processing instead of ATmega328P AU to save cost?

I am using arduino pro mini (which contains Atmega328p AU ) along with cc2541(HM-10) to process and transfer data over BLE to smartphone. I...