The E-series numbers are the common values used in resistors. For example, the E6 values are:
- 1.0
- 1.5
- 2.2
- 3.3
- 4.7
- 6.8
As you can see, each is about \$10^\frac16\$ apart. But I wonder why they aren't the powers of \$10^\frac16\$ rounded to 2 significant figures.
- \$10^\frac16 \approx 1.4678\$
- \$10^\frac26 \approx 2.1544\$
- \$10^\frac36 \approx 3.1623\$
- \$10^\frac46 \approx 4.6416\$
- \$10^\frac56 \approx 6.8129\$
3.1623 should't round to 3.3 no matter rounding upwards or downwards. And by rounding to the closest number, 4.6416 rounds to 4.6.
The same happens in other E-series values. For example, the powers of \$10^\frac{1}{12}\$ rounded to 2 significant figures are:
- \$10^\frac{0}{12} \approx 1.0\$
- \$10^\frac{1}{12} \approx 1.2\$
- \$10^\frac{2}{12} \approx 1.5\$
- \$10^\frac{3}{12} \approx 1.8\$
- \$10^\frac{4}{12} \approx 2.2\$
- \$10^\frac{5}{12} \approx 2.6\$
- \$10^\frac{6}{12} \approx 3.2\$
- \$10^\frac{7}{12} \approx 3.8\$
- \$10^\frac{8}{12} \approx 4.6\$
- \$10^\frac{9}{12} \approx 5.6\$
- \$10^\frac{10}{12} \approx 6.8\$
- \$10^\frac{11}{12} \approx 8.3\$
While the E12 values are:
- 1.0
- 1.2
- 1.5
- 1.8
- 2.2
- 2.7
- 3.3
- 3.9
- 4.7
- 5.6
- 6.8
- 8.2
The numbers 2.7, 3.3, 3.9, 4.7, and 8.2 from E12 are different from their corresponding ones computed above.
So why are the E-series of preferred numbers different from the powers of 10 rounded to the closest number?
No comments:
Post a Comment